Poissonovi točkovni procesi
نویسندگان
چکیده
U raznim znanstvenim disciplinama od velike je važnosti odrediti precizan matematički model za slučajno razbacane točke u prostoru (ili vremenu). Upravo takav model nam daju tzv. Poissonovi točkovni procesi. Iako je matematički alat za njihovu analizu ponekad vrlo napredan, već i relativno jednostavnim vjerojatnosnim metodama možemo izvesti vrlo korisne zaključke o ponašanju nasumično razbacanih točaka i njihovom grupiranju. Članak kroz primjere ilustrira primjenu ovakvih metoda na praktične probleme u različitim kontekstima.
منابع مشابه
Applications of Procesi Bundles to Cherednik Algebras
In this talk we describe some applications of Procesi bundles that appeared in Gufang’s talk to type A Rational Cherednik algebras introduced in Jose’s talk. We start by recalling Procesi bundles, quantum Hamiltonian reductions, and Cherednik algebras. Then we apply Procesi bundles to relating the spherical Rational Cherednik algebras to quantum Hamiltonian reductions. Finally, we study the def...
متن کاملExact Traveling Wave Solution of Degasperis-Procesi Equation
In this paper, exact traveling wave solution of Degasperis–Procesi equation can be investigated via the first-integral method. By using the first-integral method which is based on the ring theory of commutative algebra, We construct exact traveling wave solution for Degasperis–Procesi equation , and the obtained solution agrees well with the previously known result.
متن کاملOn Time Fractional Modifed Camassa-Holm and Degasperis-Procesi Equations by Using the Haar Wavelet Iteration Method
The Haar wavelet collocation with iteration technique is applied for solving a class of time-fractional physical equations. The approximate solutions obtained by two dimensional Haar wavelet with iteration technique are compared with those obtained by analytical methods such as Adomian decomposition method (ADM) and variational iteration method (VIM). The results show that the present scheme is...
متن کاملThe Degasperis-Procesi equation as a non-metric Euler equation
In this paper we present a geometric interpretation of the periodic Degasperis-Procesi equation as the geodesic flow of a right invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the Degasperis-Proces...
متن کامل